Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368
T. V. Sundar, ${ }^{\text {a }}$ V. Parthasarathi, ${ }^{\text {a }}{ }^{\text {* }}$ C. Álvarez-Rúa, ${ }^{\text {b }}$
S. García-Granda, ${ }^{\text {b }}$ A. Saxena, ${ }^{\text {c }}$
P. Pardasani ${ }^{c}$ and
R. T. Pardasani ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Physics, Bharathidasan University, Tiruchirappalli 620 024, India,
${ }^{\text {b }}$ Departamento de Química Física y Analítica, Universidad de Oviedo, 33006 Oviedo, Spain, and ${ }^{\mathrm{c}}$ Department of Chemistry, University of Rajasthan, Jaipur 302 004, India

Correspondence e-mail: vpsarati@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.038$
$w R$ factor $=0.104$
Data-to-parameter ratio $=13.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

(rac-5RS,7RS,8SR)-Spiro[7-methoxy-carbonyl-1-aza-3-thiabicyclo[3.3.0]-octane-8,1'-acenaphthylen]-2'-one

The title compound, $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$, crystallizes in the monoclinic space group $P 2_{1} / c$, with four molecules in the unit cell. The structure contains a spiro-carbon connecting a bicyclooctane group, consisting of two fused five-membered rings, to an acenaphthylene moiety. The five-membered ring containing the S atom is in an envelope conformation. The conformation of the other five-membered ring of the bicyclo-octane moiety is close to a half-chair. The methoxycarbonyl group is equatorially substituted.

Comment

We are interested in the X-ray structure determination of some novel polycyclic spiro-heterocyclic compounds, as they can be used as precursors for the total synthesis of naturally occurring alkaloids (Grundon, 1988). The bicyclo-octane ring system has three chiral atoms, viz. C5, C7 and C8 (Fig. 1), and the coordinates of these atoms correspond to $5 R, 7 R$ and $8 S$. However, the compound crystallizes as a racemic mixture in the space group $P 2{ }_{1} / c$. The angles around the spiro atom C 8 are $\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1=103.34(12)^{\circ}, \mathrm{C} 9-\mathrm{C} 8-\mathrm{C} 18=102.40(12)^{\circ}$, $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 18=116.20(13)^{\circ}, \mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9=111.24(13)^{\circ}$, $\mathrm{C} 18-\mathrm{C} 8-\mathrm{C} 7=116.12(12)^{\circ}$ and $\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9=107.46(12)^{\circ}$. The methoxycarbonyl group is equatorially substituted at C7. The acenaphthylene moiety occupies two substituent positions at C8.

(I)

The $\mathrm{Cs} p^{2}$ to $\mathrm{Cs} p^{2}$ distances in the acenaphthylene group range from $1.366(3)(\mathrm{C} 15-\mathrm{C} 16)$ to $1.570(2) \AA(\mathrm{C} 8-\mathrm{C} 9)$ and the $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles range from 102.40 (12) (C9-C8$\mathrm{C} 18)$ to $123.78(15)^{\circ}(\mathrm{C} 14-\mathrm{C} 19-\mathrm{C} 18)$. These values compare well with those of previously reported related structures (Hazell, 1976; Hazell \& Hazell, 1977; Hazell \& Weigelt, 1976; Jones et al. 1992).

Both the fused five-membered rings of the bicyclo-octane moiety are puckered. The N1/C2/S3/C4/C5 five-membered ring of the bicyclo-octane group is in an envelope conformation [puckering parameters $Q=0.498$ (2) \AA and $\varphi=176.2(2)^{\circ}$ for the atom sequence $\mathrm{S} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$; Cremer \& Pople, 1975], with atom S3 in the flap position. The torsion

Received 6 November 2002 Accepted 14 November 2002 Online 22 November 2002

Figure 1
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
angle $\mathrm{C} 2-\mathrm{S} 3-\mathrm{C} 4-\mathrm{C} 5$ is $-39.58(12)^{\circ}$, while the angle $\mathrm{C} 4-$ $\mathrm{S} 3-\mathrm{C} 2-\mathrm{N} 1$ is $38.80(12)^{\circ}$. The conformation of the other five-membered ring ($\mathrm{N} 1 / \mathrm{C} 5 / \mathrm{C} 6 / \mathrm{C} 7 / \mathrm{C} 8$) of the bicyclo-octane group is close to a half-chair [puckering parameters $Q=$ 0.384 (2) \AA and $\varphi=86.4$ (3) ${ }^{\circ}$ for the atom sequence $\mathrm{N} 1-\mathrm{C} 5-$ C6-C7-C8]. The dihedral angle between the least-squares planes of the above two rings is $51.96(10)^{\circ}$.

The $\mathrm{C} 5-\mathrm{N} 1$ bond distance is 1.488 (2) \AA. This is comparable to the $\mathrm{Csp}{ }^{3}-\mathrm{Nsp}^{3}$ distances found in similar structures (Sussman \& Wodak, 1973; Wodak, 1975). The geometry around the N atom is pyramidal. The bond distance $\mathrm{C} 2-\mathrm{S} 3$ is 1.8323 (18) \AA and S3-C4 is 1.8044 (18) \AA. The angle C2$\mathrm{S} 3-\mathrm{C} 4$ is $86.99(8)^{\circ}$. The structure is stabilized mainly by van der Waals interactions.

Experimental

A mixture of acenaphthylene-1,2-dione $(0.364 \mathrm{~g}, 2 \mathrm{mmol}),(R)-(-)$ -thiazolidine-4-carboxylic acid ($0.27 \mathrm{~g}, 2 \mathrm{mmol}$) and methyl acrylate $(0.172 \mathrm{~g}, 2 \mathrm{mmol})$, in an equimolar ratio, was refluxed for 22 h in acetonitrile under a nitrogen atmosphere. After completion of the reaction, monitored by the disappearance of the acenaphthylene-1,2dione spot in TLC analysis, the reaction mixture was filtered to remove the unreacted acid. The filtrate was concentrated in vacuo and kept at 273 K . A yellow crystalline solid was obtained and recrystallized from chloroform $/ n$-hexane as yellow cuboidal crystals $(0.604 \mathrm{~g}, 75 \%$; m.p. 445 K). A small amount of the compound (0.2 g) was dissolved in chloroform (2 ml). N-Hexane (8 ml) was layered carefully down the side of the test tube on to the solution. The volume ratio of solvent to precipitant was 1:4. The test tube was plugged with cotton wool and left to stand undisturbed for 24 h . As the precipitant (n-hexane) diffused into the solution, crystals were formed at the interface.

Crystal data
$\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$M_{r}=339.40$
Monoclinic, $P 2_{d} / c$
$a=9.3597$ (1) А
$b=14.7896$ (2) \AA
$c=14.9199$ (1) \AA
$\beta=128.660(5)^{\circ}$
$V=1612.73(3) \AA^{3}$
$Z=4$
$D_{x}=1.398 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 9012
reflections
$\theta=2.2-68.3^{\circ}$
$\mu=1.93 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Rectangular block, yellow $0.32 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Nonius KappaCCD diffractometer
φ scans with κ offsets
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
$T_{\text {min }}=0.583, T_{\text {max }}=0.707$
21038 measured reflections
2926 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.104$
$S=1.04$
2926 reflections
218 parameters
H -atom parameters constrained
2567 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=68.2^{\circ}$
$h=-11 \rightarrow 11$
$k=-17 \rightarrow 17$
$l=-16 \rightarrow 17$

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 6-\mathrm{C} 7$	$1.517(2)$		
			$110.46(12)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 8$	$119.47(13)$	$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 5$	$102.89(13)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	$111.25(13)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	
			$-163.65(14)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$33.55(16)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 20$	$30.13(15)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$152.37(14)$	$\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{N} 1$	

All H atoms were treated as riding; $\mathrm{C}-\mathrm{H}=0.93-0.98 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for all others.

Data collection: COLLECT (Nonius, 1997-2000); cell refinement: HKL SCALEPACK (Otwinowski \& Minor, 1997); data reduction: HKL DENZO (Otwinowski \& Minor, 1997) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: WinGX (Version 1.64.02; Farrugia, 1999) and PLATON (Spek, 2002); software used to prepare material for publication: SHELXL97.

TVS thanks the UGC, India, for a grant in the form of Minor Research Project (F.MRP-039/02, Link No. 1030). SGG thanks the Spanish MCyT (BQU2000-0219) and FICYT(PR-01-GE-4) for financial support.

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Grundon, M. F. (1988). The Alkaloids, Vol. 32, edited by A. Brossi. San Diego: Academic Press.
Hazell, A. C. (1976). Acta Cryst. B32, 2010-2013.
Hazell, A. C. \& Hazell, R. G. (1977). Acta Cryst. B33, 360-365.
Hazell, A. C. \& Weigelt, A. (1976). Acta Cryst. B32, 306-308.

organic papers

Jones, P. G., Bubenitschek, P., Sheldrick. G. M. \& Dyker. G. (1992). Acta Cryst. C48, 1633-1635.
Nonius (1997-2000). Collect. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (2002). PLATON. Version of April 2002. Utrecht University, The Netherlands.
Sussman, J. L. \& Wodak, S. J. (1973). Acta Cryst. B29, 2918-2925.
Wodak, S. J. (1975). Acta Cryst. B31, 569-573.

